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A FAMILY OF NEIGHBORLY POLYTOPES 

BY 

DAVID BARNETTE* 

ABSTRACT 

A d-polytope P is said to be neighborly provided each [d/2] vertices determine 
a face of P. We construct a family of d-polytopes that are dual to neighborly 
polytopes by means of facet splitting. We use this family to find a lower bound 
on the number of combinatorial types of neighborly polytopes. We also show 
that all members of this family satisfy the famous Hirseh conjecture. 

1. Introduction 

A d-polytope is said to be neighborly provided each set of [d/2] vertices 

determines a face of P. One family of neighborly d-polytopes is the family of 

cyclic d-polytopes. A cyclic d-polytope is defined to be the convex hull of d + 1 

or more points on the curve in R d consisting of all points of the form 

(t, t2, . .  ., td),  where t runs through the real numbers. This curve is called the 

m o m e n t  curve. Remarkably, the combinatorial type of the cyclic d-polytope 

depends only on the number of points chosen, and not on their location on the 
curve. This gives us an infinite family of neighborly d-polytopes with one 

combinatorial type for each possible number of vertices. 
It is known that there are other neighborly d-polytopes (i.e., ones that are not 

isomorphic to any cyclic polytope), but there has not appeared in the literature 
any systematic construction of other infinite families of neighborly d-polytopes. 

The closest to this is in Grfinbaum's book, Conoex  Polytopes [3], where he 
constructs a non-cyclic neighborly 4-polytope with eight vertices, and then 

remarks that the same methods can clearly be used to get examples with larger 

numbers of vertices and also examples in higher dimensions. 

In this paper we construct an infinite family of duals of neighborly d-polytopes 

by using facet splitting. This family is much richer in combinatorial types than 

the duals of the cyclic polytopes. The number of different combinatorial types 
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with n facets grows arbitrarily large as n increases. We will get an estimate on 

the number of combinatorial types in our family, thus establishing a lower bound 

on the number of combinatorial types of neighborly d-polytopes with n vertices. 

We shall also show that the polytopes in our family have diameter at most n - d, 
P 

where n is the number of facets, thus confirming the Hirsch conjecture for these 

polytopes. 

2. Definitions and preliminaries 

If a polytope is the dual of a neighborly d-polytope, we shall call it a 

*-neighborly polytope. Clearly, a *-neighborly d-polytope is one in which each 

[d/2] facets have nonempty intersecton. When the polytope is simple, that is, it is 

the dual of a polytope whose faces are all simplices, then we can determine the 

dimension of this nonempty intersection. 

LEMMA 1. In a simple polytope, if k facets have a nonempty intersection, then 

the dimension of their intersection is d - k. 

Another fact about simple d-polytopes that we shall need is the following: 

LEMMA 2. If, in a simple d.polytope P, a k-face H meets a facet F, and if 

H~_ F, then G = H N F is a face of dimension k - 1. 

Lemmas 1 and 2 are standard results. The reader should consult [3, chapter 3]. 

Our polytopes will be constructed by facet splitting. For simple 3-dimensional 

polytopes, facet splitting is accomplished by doing the following. We choose a 

segment across a facet F of a polytope P, missing the vertices of the facet, thus 

cutting the facet into two polygons. Next, a plane H containing this segment is 

chosen such that H separates the vertices of one of the polygons, other than the 

vertices on H, from the other vertices of the polytope (see Fig. 1). 

Let H + be the closed halfspace with boundary H, containing the vertices of P 

that are not on the facet being split. Let P '  be the polytope P f3 H ÷. We say that 

P '  is obtained from P by splitting F. 

Fig. 1. 
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Whenever this splitting is performed on simple polytopes the two new facets 

will be isomorphic to the polygons whose union is F. Furthermore, the two new 

facets will meet the other faces of P' the same way that the two polygons meet 

the faces of P. In other words, we can see the combinatorial structure of the new 

polytope without actually using the plane H to cut off part of P. 

For a simple d-polytope P, the same process is used. A facet is chosen to be 

split. A (d - 2)-dimensional hyperplane H in the (d - 1)-dimensional affine hull 

of that facet is chosen that misses the vertices of P and separates the facet into 

two ( d -  1)-polytopes. A hyperplane (in R d) is chosen that contains H, and 

separates the vertices of one of the two (d - 1)-polytopes, other than vertices on 

H, from vertices of P. Let H ÷ be the closed halfspace bounded by H, containing 

the vertices of P that are not on F. The intersection of P with H ÷ is the polytope 

that we say is obtained from P by splitting the facet F. A careful accounting of 

facet splitting and its properties can be found in [2]. 

Splitting a facet F of a polytope P, induces facet splittings on facets of P that 

meet F. Let F '  be a facet of P that meets F on a subfacet S that is intersected by 

H. The intersection of H with the atfine hull of S is a hyperplane in the attine 

hull of S, separating S into two (d - 2)-polytopes. The intersection of the attine 

hull of S with the hyperplane that "cuts off" part of F from the rest of P, also will 

"cut off" the vertices of one of the two (d - 2)-polytopes from the rest of F'.  This 

is what we call a splitting induced by the splitting of F. Note that this induced 

splitting is a splitting of dimension one lower than the original splitting. This 

induced splitting will induce splittings of still lower dimensional faces in the same 

way. 

It is important, that the original polytope is simple, for otherwise the two new 

facets will not be isomorphic to the two ( d -  1)-polytopes into which F was 

separated. This splitting process produces a simple polytope, thus one can 

perform repeated facet splittings on any given simple polytope. 

There are several special classes of 3-polytopes that we shall need to know 

about. The first is the class of based 3-polytopes. These are the simple 

3-polytopes that have one facet, called the base, that meets all other facets. 

When the graph of such a polytope is drawn in the plane with the base as the 

outside face, it looks like a simple circuit for the outside face with the vertices 

and edges inside the circuit forming a tree. Because of this, it is easy to show that 

there is always a triangular face meeting the base. Using the existence of these 

triangular faces, one can easily prove the following: 

LEMMA 3. The based 3-polytopes can be generated by repeated facet splittings 
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starting with the tetrahedron. These facet splittings being of the special type where 
one of the two polygons that the facet is separated into, is a triangle meeting the 

base. 

This special type of splitting is usually referred to as truncating a vertex, 
because the part of the polytope that is cut off is just a vertex. 

The second class of 3-polytopes we shall call double based polytopes, for they 

are the simple 3-polytopes that have two facets that meet all of the other facets. 

Figure 2 shows the first four members of this class. 

One property of cyclic polytopes that we shall need is Gale's "evenness 
condition". This is a condition that determines which vertices of a cyclic 

d-polytope are the vertices of the facets. The condition is simply that any set of d 

vertices of a cyclic d-polytope P determines a facet of P provided that given any 

two vertices not in this set of d vertices, there is an even number of vertices of 

the set between them. Betweenness here is determined by the order of the 

vertices on the moment curve. 

LE~tA 4. If  the vertices of a d-polytope can be ordered in such a way that a 
set of d vertices is the set of vertices of a facet if and only if it satisfies the evenness 
condition, then the polytope is isomorphic to the cyclic d-polytope with the same 

number of vertices. 

PROOF. We simply take the vertices in the given ordering and map them onto 

the corresponding vertices in the ordering on the moment curve. This mapping is 

clearly an isomorphism. 

Actually, we shall work with-an ordering of the facets of the dual polytopes, 

thus we shall have an ordering of the facets such that a set of d facets determines 

a vertex if and only if any two other facets are separated by an even number of 

the d facets. From Lemma 4, it follows that any two simple d-polytopes with the 

same number of facets that satisfy this evenness condition will be isomorphic. 

Fig. 2. 
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3. The 4-s-polytopes 

We begin by describing how we generate our *-neighborly 4-dimensional 

polytopes. The polytopes that we generate will be called d-s-polytopes. The " d "  

is the dimension of the polytope, the " s "  is for "splitting". 

The 4-s-polytopes are generated by a sequence of facet splittings starting with 

the simplex. 

We choose a facet F0 of the 4-simplex and a facet So of F0. The facet Fo is split 

in the following manner: we take a plane in the afline hull of Fo, parallel to So, 

then rotate the plane so that one vertex Vo of So is on the other side of the plane 

after the rotation (Fig. 3). This is the plane that we use to define a splitting of F0. 

The facet Fo is split into two facets. The facet that does not contain Vo, is called 

F~, and the facet of F1 that resulted from the induced splitting of So, is called Sl. 

Inductively, we split Fk, by taking a plane in its affine hull, parallel to Sk, 

rotating the plane so that one vertex vk of Sk is on the other side of the plane 

after the rotation, and using that plane to define the splitting of Fk. The new facet 

that does not contain the vertex vk is called FE÷~. The new subfacet resulting 

from the induced splitting of S~, that does not contain v~, is called Sk÷t. 

In each of these polytopes, the facet that meets Fk on Sk will be called Bk. 
The first two splittings will each produce one combinatorial type of polytope. 

The third splitting will produce all three types of *-neighborly 4-polytopes (this 

can be verified by performing the splittings and comparing the results with the 
known enumerations of these polytopes (see [4])). 

In general, many combinatorial types of 4-polytopes will be generated with 

each splitting. In Theorem 1 we get a lower bound on the number of 
combinatorial types produced. 

LEMMA 5. The facet Fk is a double based 3-polytope. 

PROOF. This is clearly true for F0. Proceeding by induction, we assume Fk is a 
double based polytope. The plane parallel to Sk will split Fk into two 3- 

Fig. 3. 
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polytopes, the one containing vk being a prism over S~. Clearly, rotating the 

plane produces a double based polytope. (Fig. 4.) 

LEMMA 6. Every combinatorial type of based 3-polytope can be realized by 

one of the facets B~. 

PROOF. When we split the facet F~, the induced splitting on Bk is a vertex 

truncation. Any vertex of Sk can be so truncated, simply by the choice of vertex 

that the rotating plane passes. By Lemma 3, this generates all of the combinator- 

ial types of based 3-polytopes. 

THEOREM 1. The number of combinatorial types of neighborly 4-polytopes 
with n vertices is at least 

H ( n ) + n + l H ( n + l ] + 2 n + 4 _  I n + 2 \  
n 4n \ 2 ] ~ 1 - 1 ~ - - ~ )  

where 

(2n - 6)! 
n ( n )  = (n - 1)! (n - 3 ) ! '  

= 0  

for n an integer, 

otherwise. 

PROOF. Let R (n) be the number of combinatorial types of based 3-polytopes 

with n 2-faces. Rademacher has shown [9] that 

R(n)  = G(n)+~(n/2 + 1)G(n/2 + 1)+ ~(n/3 + 1)G(n/3 + 1) 

where G(n) = (2n - 4)! ~hi (n - 2)! for n an integer, = 0 otherwise. 

We shall begin by counting rooted 4-s-polytopes. By a rooted 4-polytope we 
mean a 4-polytope together with one of its facets, which we call the root of the 
polytope. Two rooted 4-polytopes will be called root-isomorphic provided there 

is an isomorphism between them that takes one root onto the other. Clearly, two 

polytopes with non-isomorphic roots are not root-isomorphic. It follows from 

Lemma 6 that there are at least R ( n -  1) combinatorial types of roots for 

*-neighborly 4-polytopes with n facets (note that each facet of such a 4-polytope 

will have n -  1 2-faces). 

Fig. 4. 
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To each root isomorphism type there can correspond just one combinatorial 

type. On the other  hand, there can be at most n different root isomorphism types 

for each combinatorial type - -  one root type for each choice of a root. We thus 

have at least R (n - 1)/n combinatorial types of 4-s-polytopes, and therefore at 

least that many *-neighborly 4-polytopes with n facets. Since R (n - 1)/n equals 

the bound in our theorem we are done. 

The family of 4-s-polytopes is not the same as the family of *-neighborly 

4-polytopes. In their enumerat ion of neighborly 4-polytopes with 9 vertices, 

Altshuler and Steinberg [1] found five polytopes with the property that no vertex 

has a link isomorphic to the dual of any double based polytope. It follows that 

the duals of these polytopes will not have any facets that are double based 

polytopes. Since each 4-s-polytope has at least one such facet, namely F~, we see 

that there are at least five *-neighborly 4-polytopes with 9 facets that are not 

4-s-polytopes. 

We can use a systematic notation for the 4-s-polytopes that we generate. For 

any double based polytope Fk, let us number the vertices of a base face in a cyclic 

ordering according to a right hand rule (i.e., if the fingers of the right hand point 

in the direction of increasing numbers, the thumb points upward (Fig. 5)). The 

sequence of splittings performed can then be denoted by a sequence of integers 

corresponding to the vertices of SE that we rotate the plane past. Unfortunately,  

different sequences of integers can correspond to the same combinatorial type. 

For example, by symmetry, the sequence a ~ , ' " , a k  is isomorphic to the 

sequence n - 2 - a~,. •., n - 2 - ak for any 4-s-polytope with n facets. There  are 

other less obvious examples. It is not at all clear to the author how to tell if two 

sequences correspond to the same combinatorial type. 

THEOREM 2. The duals of the cyclic 4-polytopes are 4-s-polytopes. 

PROOF. We shall show that the polytopes with the sequences 1,. •., 1 are dual 

to the cyclic 4-polytopes. For any facet Fk, we number its 2-faces (as illustrated in 

Fig. 6 for two of the FE'S). 

Using this numbering, we induce a numbering of the facets of the 4-polytope. 

6 I 

Fig. 5. 
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i) 1; 

Fig. 6. 

The facet that meets Fk on a 2-face with the number i will also be given the 

number i. We complete the numbering of the facets by giving F~ the number 

k + 5 .  

After we have performed a splitting on Fk, we let Fk÷l have the number k + 6; 

we let the other  3-polytope produced from Fk have the number that was assigned 

to Fk, namely k + 5, and let all other facets retain the numbers that they had 

before the splitting. Notice that this induces the same kind of numbering on the 

facets of Fk+l as described above. This is illustrated in Fig. 7 for the case k = 2. 

Now we show that this numbering will give us a Gale's evenness condition for 

determining vertices of the polytope. Any vertex of Fk that meets a quadrilateral 

face of Fk is determined by two consecutively numbered facets together with 

either facets k + 4 and k + 5, or facets 1 and k + 5. In either case, facets not 

meeting the vertex are separated by an even number of facets meeting the 

vertex. 

The two vertices of F~ that do not meet any quadrilateral faces of Fk are 

determined by the facets 1, 2, k + 4  and k +5 ,  or else by facets 1, k +3,  k + 4  

and k + 5. In each case our evenness condition holds. It remains for us to show 

that the evenness condition holds for vertices not on Fk. But observe that the 

condition will hold for all vertices of the 4-simplex, and that all other vertices are 

on some Fk at some stage of the splitting sequence. Since the numbers assigned 

to facets do not change, the vertices not on Fk satisfy the evenness condition 

because they satisfied it earlier in the generation process. 

/ 
! 

Fig. 7. 
! 
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In this argument ,  one might worry that vertices determined by a set of facets 

which includes the facet numbered k +5 ,  might fail to satisfy the evenness 

condition later in the splitting process. It would seem that this could happen 

since one can have an odd number  of facets at the end of the ordering and still 

satisfy the evenness condition, but if later on this odd number  of facets is not at 

the end of the ordering, then the evenness condition no longer holds. But 

fortune is with us, these vertices are on Fk at every stage of the splitting process, 

and we have given an argument  for vertices on Fk that does not depend on the 

evenness condition ever having held at a previous stage. 

Since the evenness condition determines the combinatorial  structure, and 

since the duals of the cyclic 4-polytopes satisfy the evenness condition, we are 

done. 

4. The d-s-polytopes 

The description of the generation of the *-neighborly polytopes in d-  

dimensions is more complicated. The facet splitting is done as follows. Let  F d-t 

be the facet to be split (we shall use superscripts to indicate dimension). We 

choose a nested set of faces F 2 C F3C - . .  C F d-j, such that for each k, 3 _-< k < 

d - 1, F k-' meets every [(k + 2)/2] face of F k. Of course such a sequence may not 

be possible for an arbitrarily chosen facet, but we shall show that such a choice is 

possible in the generation of our family of *-neigborly d-polytopes.  

In the affine hull of F ~-I, we choose a hyperplane ~r parallel to F ~-2 and close 

enough to it that 7r separates the vertices of F ~-2 from the other  vertices of F d-~. 

Any point on the same side of ~r as F d-2 will be said to be  b e l o w  "rr, while points 

on the other side will be said to be a b o v e  7r. 

We rotate ~r until F a-3 is above zr but the other  vertices of F d-2 are below. 

Then we rotate zr until F a-4 is below zr but the other  vertices of F a-3 a r e  still 

above ~r. We continue in this manner  until we have rotated ,r past the face F 2. 

Whether  F 2 is above or below 7r at this stage depends on the parity of the 
dimension. If F 2 is above ,r we choose a vertex v of F 2 and rotate  ,r until v is 

below 7r. If F 2 is below ~" we rotate ,r until v is above  7r. 

After  this sequence of rotations has been per formed we have the hyperplane 

that determines the splitting of F d-1. It  might seem that we cannot  always 

perform the required rotations. But observe that whenever  we have a (k - 1)- 

hyperplane in the afline hull of an F ~ separating the vertices of a facet F k-1 f rom 

the other  vertices of F k, and sufficiently close to F k-l, then that hyperplane can 

be rotated so that any chosen facet F k-2 of F k-~ will pass to the other  side of the 
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hyperplane. In our sequence of rotations, the intersection of the hyperplane ~r 

with the affine hull of F k will be just such a (k -1) -d imens iona l  hyperplane. 

Thus it is possible to rotate ~" such that the intersection of zr with F ~ rotates past 

F k-2. 

LEMraA 7. ~" cuts every [(k + 2)~2]-face of  F k for each k, 3 <- k <= d - 1. 

PROOF. For k = 3, this is just the s tatement  that 7r cuts every 2-face of F 3. 

Since 7r f3 F 3 is a 2-dimensional plane, since the two-dimensional plane rotates 

past a vertex of F :, and since F :  meets each 2-face of F -~, we see that this is just 

the case we have considered when we were generating the *-neighborly 

4-polytopes. The lemma is thus true for k = 3. We now proceed by induction. 

Consider an arbitrary tace F k. Let us assume that 7r has been rotated until it 

separates the vertices of F ~-1 from the other vertices of F k. We use the term 

upper face for the [(k + 2)/2J-faces of F ~ that are not subsets of F k-l, and the 

term lower face for the other [(k + 2)/2]-faces of F k. 

At this stage in the sequence of rotations, 7r cuts every upper  face of F k (recall 

that F k-' meets every upper  face of F k). After  the rest of the rotations are 

performed,  it is conceivable that zr does not cut all of the upper  faces anymore.  

We shall see that this is not so. Let us assume, without loss of generality, that 

F k-' lies below 7r before we do the rest of the rotations. For ~ to fail to cut an 

upper  face after the rest of the rotations, 7r would have to lie below the 

intersection of that upper  face with F ~-1. By Lemma  2, this intersection is a 

([(k + 2)/2] - 1)-face of F k-l. Since 7r is rotated past F k-2 but never past the 

other vertices of F ~-1, such a ([(k + 2)/2] - 1)-face would have to be a face of 

F k 2. By induction, however,  7r cuts every ([(k + 2)/2] - 1)-face of F k 2. Thus 

after all of the rotations 7r still cuts every upper  face. 

Now we consider the [(k + 2)/2]-faces of F k-1. These are the lower faces. By 

Lemma  2 a lower face X would meet  F k-~ on a ([(k + 2 ) / 2 ] -  1)-face or else 

would be a face of F k-2. If X is a face of F k-2 then 7r cuts X because it even cuts 

every facet of X (by induction). If X intersects F ~-2 on a ([(k + 2)/2] - 1)-face 

then since we have seen that this face is cut by ~- we see that X is also cut by rr. 

For each face F k, there will be two k-faces created when the facet is split. We 

define F k' to be the one that does not contain the vertex v. 

LEMMA 8. F 2' C F 3' C "" • C F d v and  F k-'' meets every [(k + 2)~2]-face o f  F ~' 

for all 3 <-_ k <- d - 1 .  

PROOF. The first assertion is obvious. For the second assertion, we first 

observe that there are two types of [(k + 2)/2J-faces of F ~'. 
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(i) Faces  that  are the result  of a [(k + 2)/2]-face of  F ~ being split. 

(ii) Faces  of the  fo rm G A 7r where  G is a ([(k + 2)/2] + 1)-face of  F k. For  

F k- ' '  to miss a face X of type (i) we would have  to have  that  X A F k-~ lies 

ent irely on one  side of 7r. Since v lies in F k- ' ,  we see that  this intersect ion must  

in fact be  a face of F ~ 2. But  since ~- cuts every  ([(k + 2)/2] - 1)-face of  F k -~, we 

see that  the intersect ion cannot  lie ent irely on one  side of rr. 

Suppose  that  F ~-'' misses a face Z of type (ii). Since G is ([(k + 2)/2] + 1)- 

d imensional ,  it intersects  F ~ ~ on a [(k + 2)/2J-face/4.  T h e  face H intersects  F k -~ 

on a ([(k + 2)/2] - D-face (by induct ion F k--~ mee t s  every  [(k + 1)/2]-face of  F k 

and the re fore  mee t s  every  [(k + 2)/2J-face of Fk - ' ) .  We  know that  ~" cuts every  

([(k + 2)/2] - 1)-face of F k -2, thus when  G is cut it will have  vert ices bo th  above  

and be low ~'. In part icular ,  vert ices in F k 2,, thus Z mee t s  F k i,. 

It  is now very simple to const ruct  our  dual ne ighbor ly  d -po ly topes .  We  begin 

with the s implex and choose  a nested set of faces S 2 C S ' C • • • C S "~ ~ and apply 

a splitting as descr ibed above .  W e  use the set of faces S 2, • •., S d '' to de t e rmine  

the next  splitting, and so on. 

THEOREM 3. The polytopes generated in this way are *-neighborly. 

PROOF. This  is clearly t rue  for  the simplex.  Proceeding  by induction,  suppose  

we apply the splitting to a po ly tope  P to get a po ly tope  P ' .  We  must  show that  

given any [d/2]  facets  of P ' ,  they have  n o n e m p t y  intersect ion.  By induction,  P 

has this p roper ty .  If the [d/2] facets chosen do not contain  a m o n g  them ei ther  of 

the two new facets  c rea ted  by the splitting, then they will still have  n o n e m p t y  

intersect ion.  

Suppose  we choose  [d/2] facets, one  of which is a new facet  K, result ing f rom 

the splitting of a facet F. In P these facets,  o the r  than K, intersect  on a 

d - [d/2] + 1-face, that  is, a [(d + 2)/2]-face of F. Since each  such face of F is 

split, the intersect ion of these [ d / 2 ] - 1  faces will mee t  K. 

Suppose  we choose  [d/2] facets  which include a m o n g  them both  new facets  K 

and J. T h e  [d/2] - 2 facets  (excluding K and J )  mee t  on a d - [d/2] + 2-face, that  

is, a ([(d + 2)/2] + 1)-face, which intersects  F on a face of  d imens ion  at least 

[(d + 2)/2]. Since each such face is cut when  F is split, the intersect ion of K and J 

mee t s  the  intersect ion of the  [ d / 2 ] -  2 facets.  

LEMMA 9. In a d-s-polytope P, all the k- faces  F3, . . . , F k ,  . . . , F  ~--' are 

k-s-polytopes. 

PROOF. T h e  split t ing of F ~-~ by zr induces a splitting of F d-2 by ~" A F d 2. 

The  descr ipt ion of these split t ings is the same  as the descr ipt ion of the 
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generation of the (d - 1)-s-polytopes except that there is a reversal of "above" 

and "below", and the plane is not necessarily parallel to F d-2 before the 

sequence of rotations. Neither of these differences has any effect on the 

combinatorial type of polytope that results. 

We now turn to the question of how many combinatorial types we have 

constructed. 

LEMMA 10. The number of 3-faces of a simple d-polytope with n facets is at 
most G-~3). 

PROOF. By Lemma 1, the nonempty intersection of any d - 3  facets has 

dimension 3. Since each 3-face is the intersection of d - 3  facets, we obtain the 

maximum number of them if each d - 3 facets intersect on a 3-face. In this case 

we get G-%) of them. 

THEOREM 4. The number of combinatorial types of d-s-polytopes is at least 

(2n -4 ) !  
T ( n )  = n ! ( n  - 2 ) ! G _ ' 3 )  " 

PROOF. The proof is the same as in Theorem 1 except that the number of 

ways that we could choose a 3-face of a d-polytope with n facets, to be a root is 

at most G-'3) while the number of combinatorial types for these 3-dimensional 

roots is at least (and in fact greater than) (2n - 4 ) ! / n ! ( n  -2 ) ! .  

In Theorem 4 we used some crude approximations. There is a formula for the 

number of 3-faces of a dual of a neighborly d-polytope (see [3], Ch. 9), but it is 

complicated and adds nothing to the result, since we have no reason to believe 

that these methods yield a formula that is close to the actual number of 

combinatorial types. The result is good enough that we know that the number of 

types grows large without bound as n increases. We also have 

COROLLARY l. The number of neighborly d-polytopes with n vertices is at least 

T(n). 

5. Diameters of d-s-polytopes 

One of the important problems about simple d-polytopes that has not been 

settled is the Hirsch Conjecture, that the diameter of a simple d-polytope with n 

facets is at most n -  d. The diameter is defined to be the maximum distance 

between vertices, where the distance between two vertices is the minimum 

number of edges of any path joining them. The Hirsch conjecture has been 

proved only for polytopes of dimension at most three [6]. 
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Since the duals of the neighborly polytopes maximize the number of vertices, 

given the number of facets [8], one might guess that if there exist counter- 

examples to the Hirsch conjecture then some would be duals of neighborly 

polytopes. Kiee has shown that the duals of the cyclic d-polytopes satisfy the 

Hirsch conjecture [5]. We shall show here that all d-s-polytopes also satisfy the 

Hirsch conjecture, thus lending a little more support to a conjecture whose truth 

has seemed more and more doubtful recently (see [7] and [10]). 

THEOREM 5. Let  P be a d-s-poly tope  with n facets and  let x and  y be two 

vertices of  P. I f  neither x nor y is on F d-~, the vertices x and  y can be joined by a 

path of  length at most  n - d that avoids F d-~. I f  x is not on F d-I but y is, then there 

is a path o f  length at most  n - d that joins x and  y, and  meets  F d-~ only at y. 

PROOF. Our proof is by induction on n. Since in the d-simplex, each two 

vertices are joined by an edge, the theorem is true for the minimum value of n. 

Suppose we split a facet of a d-s-polytope P, producing the d-s-polytope P '  with 

n facets, and suppose that the theorem is true for P. Let  x and y be two vertices 

of P ' ,  neither of which is on F d-r. In this case x and y are vertices of P. By 

induction x and y can be joined by a path of length at most n - d - 1, which 

either misses F a-~, or meets it only at y. In either case, the hyperplane ~ misses 

every edge of the path, thus the same path joins x and y in P ' .  

Now, let x and y be two vertices of P ' ,  with x not on F d-r, but with y on F d-r. 

There are two cases: 

Case I. y is a vertex of F d-1. In this case the two vertices can be joined by a 

path of length at most n - d - 1 in P, and by the above argument, the same path 

will join them in P ' .  

Case II. y is a vertex of the subfacet that belongs to the two new facets in P' .  

In this case the vertex y is the intersection of ~r with an edge uv with u in F d-r, 

and v not in F ~-r. In P, there is a path of length at most n - d - 1 from x to v, 

that meets F d-~ only at v. We take this path in P '  and add the edge vy. This 

produces a path of length at most n - d joining x and y, and meeting F d-r only 

at y. 

COROLLARY 2. The diameter  o f  a d-s-poly tope  with n facets  is at most  n - d. 

PROOF. The proof is by induction on d. For  d = 4, Theorem 5 gives the 

desired path unless both vertices are on F 3. If x and y are on F 3 then since F 3 is a 

simple 3-polytope with n -  1 facets, there is a path joining x and y in F 3 of 

length at most n - 4  (the Hirsch conjecture is true for 3-polytopes). 
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Proceeding by induction, if P is a d-s-polytope,  Theorem 5 establishes the 

truth of this theorem unless x and y are both on F d-~. The same proof as above, 

using the inductive assumption that F ~-~ satisfies the Hirsch conjecture, finishes 

the proof. 
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